LLM-Unbound-KrishnaG-CEO

LLM10:2025 – Unbounded Consumption in LLM Applications: Business Risk, ROI, and Strategic Mitigation

At its core, Unbounded Consumption refers to an LLM application’s failure to impose constraints on inference usage—resulting in an open door for resource abuse. Unlike traditional software vulnerabilities that might involve code injection or data leakage, Unbounded Consumption exploits the operational behaviour of the model itself—by coercing it into performing an excessive number of inferences.

LLM-MisInfo-KrishnaG-CEO

LLM09:2025 Misinformation – The Silent Saboteur in LLM-Powered Enterprises

In the digital-first world, Large Language Models (LLMs) such as OpenAI’s GPT series, Google’s Gemini, and Anthropic’s Claude are redefining how businesses operate. From automating customer service and accelerating legal research to generating strategic reports, LLMs are integrated into critical enterprise workflows.
LLM misinformation occurs when the model generates false or misleading information that appears credible. This is particularly dangerous because of the model’s inherent linguistic fluency—users often assume that well-phrased responses are factually correct.

AI-Data-Poisoning-KrishnaG-CEO

LLM04: Data and Model Poisoning – A C-Suite Imperative for AI Risk Mitigation

At its core, data poisoning involves the deliberate manipulation of datasets used during the pre-training, fine-tuning, or embedding stages of an LLM’s lifecycle. The objective is often to introduce backdoors, degrade model performance, or inject bias—toxic, unethical, or otherwise damaging behaviour—into outputs.

LLM-Integrity-KrishnaG-CEO

Secure System Configuration: Fortifying the Foundation of LLM Integrity

When deploying LLMs in enterprise environments, overlooking secure configuration practices can unintentionally expose sensitive backend logic, security parameters, or operational infrastructure. These misconfigurations—often subtle—can offer attackers or misinformed users unintended access to the LLM’s internal behaviour, leading to serious data leakage and system compromise.

LLM-Sensitive-Info-KrishnaG-CEO

OWASP Top 10 for LLM – LLM02:2025 Sensitive Information Disclosure

While theoretical risks highlight potential harm, real-world scenarios bring the dangers of LLM02:2025 into sharper focus. Below are three attack vectors illustrating how sensitive information disclosure unfolds in practical settings.