Explainable AI in Information Security

In the escalating arms race between cyber defenders and attackers, artificial intelligence (AI) has emerged as a force multiplier—enabling real-time detection, adaptive response, and predictive threat intelligence. However, as these AI systems become increasingly complex, their decision-making processes often resemble a black box: powerful but opaque.
In sectors like healthcare or finance, the risks of opaque AI are already well-documented. But in cybersecurity—where decisions are made in seconds and the stakes are existential—lack of explainability is not just a technical inconvenience; it’s a business liability.
Security teams are already burdened by alert fatigue, tool sprawl, and talent shortages. Introducing opaque AI models into this environment, without explainable reasoning, exacerbates operational risks and undermines confidence in automated systems.
In a field that demands accountability, Explainable AI (XAI) isn’t a luxury—it’s a necessity.
From Security Operations Centre (SOC) analysts to CISOs and regulatory auditors, all stakeholders need clarity on what triggered a threat alert, why an incident was escalated, or how a threat actor was profiled. Without this transparency, false positives go unchallenged, real threats slip through, and strategic trust in AI-based defences begins to erode.
In this blog, we’ll explore how Explainable AI—XAI—helps transform cyber defence from a black-box model to a glass-box ecosystem, where decisions are not only accurate but also interpretable, auditable, and accountable.

Securing-Agentic-AI-KrishnaG-CEO

Agentic AI Systems: The Rise of Over-Autonomous Security Risks

Artificial Intelligence (AI) is no longer just a tool—it’s becoming a decision-maker. With the emergence of Agentic AI Systems—AI with the ability to independently plan, act, and adapt across complex tasks—organisations are entering uncharted territory. While this autonomy promises operational efficiency, it also introduces over-autonomous risks that challenge traditional cybersecurity protocols.
For C-Suite executives and penetration testers alike, understanding the evolution of AI from a predictive model to a proactive actor is no longer optional—it’s imperative. The very qualities that make agentic systems powerful—initiative, goal-seeking behaviour, and environmental awareness—also make them vulnerable to sophisticated threats and capable of causing unintentional damage.

AI-LLM-output-KrishnaG-CEO

LLM05:2025 – Improper Output Handling in LLM Applications: A Business Risk Executive Leaders Must Not Ignore

At its core, Improper Output Handling refers to inadequate validation, sanitisation, and management of outputs generated by large language models before those outputs are passed downstream—whether to user interfaces, databases, APIs, third-party services, or even human recipients.

AI-Data-Poisoning-KrishnaG-CEO

LLM04: Data and Model Poisoning – A C-Suite Imperative for AI Risk Mitigation

At its core, data poisoning involves the deliberate manipulation of datasets used during the pre-training, fine-tuning, or embedding stages of an LLM’s lifecycle. The objective is often to introduce backdoors, degrade model performance, or inject bias—toxic, unethical, or otherwise damaging behaviour—into outputs.